References and Notes

(1) P. C. Lauterbur, Tetrahedron Lett, 274 (1961).
(2) G. Fraenkel, R. E. Carter, A. McLachlan, and J. H. Richards, J. Am. Chem. Soc., 82, 5846 (1960).
(3) H. Spiesecke and W. G. Schneider, Tetrahedron Lett., 468 (1961)
(4) P. C. Lauterbur, J. Am. Chem. Soc., 83, 1838 (1961).
(5) G. A. Olah and G. D. Mateescu, J. Am. Chem. Soc., 92, 1430 (1970).
(6) J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York, N.Y., 1972, p 91.
(7) V. R. Sandel and H. H. Freedman, J. Am. Chem. Soc., 85, 2328 (1963).
(8) Olah has found a widely different value of 306 ppm/electron for the slope (ref 9). However, this correlation was for delocallzed systems containing a heteroatom, oxygen.
(9) G. A. Olah and A. M. White, J. Am. Chem. Soc., 90, 1884 (1968).
(10) M. Karplus and J. A. Pople, J. Chem. Phys., 38, 2803 (1963).
(11) A. J. Hart, D. H. O'Brien and C. R. Russell, J. Organomet. Chem., 72, C19 (1974).
(12) V. R. Sandel, S. V. McKinley, and H. H. Freedman, J. Am. Chem. Soc., 90, 495 (1968).
(13) D. H. O'Brien, A. J. Hart, and C. R. Russell, unpublished results.
(14) G. A. Olah, P. W. Westerman, and J. Nishimura, J. Am. Chem. Soc., 96, 3548 (1974).
(15) G. J. Ray, R. J. Kurland, and A. K. Carter, Tetrahedron, 27, 735 (1971).
(16) G. A. Olah, R. D. Porter, and D. P. Kelley, J. Am. Chem. Soc., 93, 464 (1971).
(17) G. A. Olah and P. W. Westerman, J. Am. Chem. Soc., 95, 7530 (1973).
(18) G. A. Olah, Y. Halpern, Y. K. Mo and G. Llang, J. Am. Chem. Soc., 94, 3554 (1972).
(19) T. E. Hogen-Esch and J. Smid, J. Am. Chem. Soc., 88, 307 (1966).
(20) L. L. Chan and J. Smid, J. Am. Chem. Soc., 90, 4654 (1968).
(21) J. P. C. M. van Dongen, H. W. D. van Dijkman, and M. J. A. de Bie, Recl. Trav. Chim. Pays-Bas, 93, 29 (1974).
(22) W. T. Ford and M. Newcomb, J. Am. Chem. Soc., 96, 309 (1974).
(23) R. Waack, M. A. Doran, E. B. Baker and G. A. Olah, J. Am. Chem. Soc., 88. 1272 (1966).
(24) R. Waack, L. D. McKeever, and M. A. Doran, Chem. Commun., 117 (1969).
(25) A. Bristock and J. A. Pople, Trans. Faraday Soc., 50, 901 (1954).
(26) G. A. Olah and A. M. White, J. Am. Chem. Soc., 91, 5801 (1969).
(27) L. D. McKeever, R. Waack, M. A. Doran, and E. B. Baker, J. Am. Chem. Soc., 91, 1057 (1969).

Daniel H. O'Brien,* Alan J. Hart, Charies R. Russell
Department of Chemistry, Texas A\&M University
College Station, Texas 77843
Received February 24, 1975

4,9,16,21-Tetramethyl-5,7,17,19-tetrakisdehydro[14]annuleno[14]annulene, a Macrocyclic Analog of Naphthalene ${ }^{1,2}$

Sir:

A little explored aspect of annulene chemistry is the synthesis of fused bicyclic hydrocarbons made up of identical $[4 n+2]$ - or of [4n]annulene rings. Hitherto, the only well studied example is naphthalene ([6]annuleno[6]annulene), which has been known for a considerable time. ${ }^{3}$ It was of interest to make available other representatives of this series, particularly to investigate their "aromaticity" or "antiaromaticity". We now describe the synthesis of 4,9,16,21-tetramethyl-5,7,17,19-tetrakisdehydro[14]annuleno[14]annulene (1), ${ }^{2,4}$ a simple derivative of the 26π-electron [14]annuleno[14]annulene (e.g., 2), in which both rings are $(4 n+2)$-membered.

A potential intermediate for the synthesis of 1 was the di-

1

2
aldehyde 14 , a suitable precursor of which appeared to be the previously described dimethylbisdehydro[14]annuleno[c]furan, $6 .{ }^{5}$ Since 6 was required in quantity, an improved synthesis was developed, 3,4-Furandicarboxaldehyde ${ }^{6}$ was converted to the bisvinylog 3 , $\mathrm{mp} 158-$ $160^{\circ} 7 \mathrm{a}, 8,9$ in 77% yield by the method of Cresp et al. ${ }^{10}$ Reaction of 3 with an excess of the Mg derivative of 3-bromo-1-butyne ${ }^{11}$ in ether at -30° for 15 min gave the pale yellow diol 4^{9} as a stereoisomeric mixture, which was coupled to the macrocyclic diol 5 with $\mathrm{O}_{2}, \mathrm{CuCl}, \mathrm{NH}_{4} \mathrm{Cl}$, and HCl in aqueous $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and benzene. It was unnecessary to purify or separate the stereoisomers of the noncrystalline 4 and 5. Treatment of crude 5 with mesyl chloride and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}{ }^{12}$ in dimethoxyethane $\left(0^{\circ}, 1.5 \mathrm{hr}, \mathrm{N}_{2}\right)$ and subsequent elimination with 1,5-diazabicyclo[4.3.0]non-5-ene at 20° for 3.5 hr then led to $6^{7 \mathrm{~b}}$ in $\sim 30 \%$ yield (based on 3). ${ }^{13,14}$

After considerable experimentation it was found that suitable modification of the furan ring of 6 could be effected by treatment with $\mathrm{Pb}(\mathrm{OAc})_{4}$ in $\mathrm{CH}_{3} \mathrm{COOH}^{15}\left(20^{\circ}\right.$, $30 \mathrm{~min}, \mathrm{~N}_{2}$), which led to the diacetate 7 (red gum; ${ }^{9} \lambda_{\max }$ (ether) 307 sh ($\epsilon 62,500$), 319 (91,500), 371 (9800), 393 (9300), 458 sh (330), 504 sh (280), 552 sh nm (190)). Hydrolysis of 7 with oxalic acid in aqueous THF ($20^{\circ}, 12 \mathrm{hr}$, N_{2}), gave the corresponding diol 8 (orange solid; $m / e 262$ $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$) instead of the dialdehyde 14, as evidenced by the ${ }^{1} \mathrm{H}$ NMR and ir spectra. The ${ }^{1} \mathrm{H}$ NMR spectra of 7 and 8 indicated them to be ca. 1:1 mixtures of the cis and trans isomers, ${ }^{15}$ which were not separated, Substance 8 proved to be base-sensitive, but could be condensed with carbethoxymethylenetriphenylphosphorane ${ }^{16}$ in benzene ($80^{\circ}, 16 \mathrm{hr}$, N_{2}). The reaction led to $\sim 50 \%$ (based on 6) of the trans, trans diester $9^{7 a, 17}$ as red needles: mp 141-1420:9 $\lambda_{\text {max }}$ (ether) 343 ($\epsilon 62,500$), $405 \mathrm{sh}(14,800), 418 \mathrm{~nm}(15,600)$, Reduction of 9 with i - $\mathrm{Bu} u_{2} \mathrm{AlH}$ in benzene ($6^{\circ}, 15 \mathrm{~min}, \mathrm{~N}_{2}$) gave the diol 10 as red needles; ${ }^{9,18} \lambda_{\max }$ (ether) 336 (ϵ $56,400), 384$ sh (9900), 396 sh (10,700), 413 (13,400), 476 (4900), 520 (540), 569 nm (400). Oxidation of 10 with MnO_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20^{\circ}, 1 \mathrm{hr}, \mathrm{N}_{2}\right)$ yielded 74% (based on 9) of the dialdehyde 11 as orange needles; ${ }^{9,18} \lambda_{\text {max }}$ (ether) 265 $(\epsilon 10,000), 347(51,900), 420 \mathrm{~nm}(15,900)$, with absorption to 600 nm (Scheme I).
Treatment of 11 with an excess of the Mg derivative of 3-bromo-1-butyne, ${ }^{11}$ as previously, gave the diol 12 which was coupled to 13 with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in DMF at 65° for $\sim 4 \mathrm{hr}$. The red noncrystalline diols 12 and 13 are mixtures of stereoisomers, which were not separated. Dehydration of crude 13 via the dimesylate, essentially as before, then yielded 5% (based on 11) of the tetrakisdehydro [14]annuleno[14]annulene 1 as dark red-brown prisms; $m / e 384.1871$ (calcd 384.1878); ; ${ }^{7,18} \lambda_{\max }$ (ether) $258(\epsilon 14,400)$, 278 sh

Scheme I

Table I. Some ${ }^{1} \mathrm{H}$ NMR Parameters of $9,10,11,1,15$, and 6 at 100 MHz in CDCl_{3} (τ Values; Internal Standard TMS) ${ }^{a}$

Compd	H^{A}	H^{B}	H^{C}	CH_{3}
9	8.83	2.07	2.31	7.29
10	9.24	1.88	2.22	7.28
11	8.56	$\leftarrow 2.06-2.34 \rightarrow$	7.26	
1	6.18	2.13	2.69	7.52
15	5.01	2.56	2.92	7.64
6	3.48	3.69	3.28	7.94

$a^{\mathrm{H}^{\mathrm{A}}}(\mathrm{d}, J=15-16 \mathrm{~Hz}), \mathrm{H}^{\mathrm{B}}(\mathrm{dd}, J=7.5-10,15-16 \mathrm{~Hz}), \mathrm{H}^{\mathrm{C}}(\mathrm{d}$, $J=7.5-10 \mathrm{~Hz}$), CH_{3} (s), for all compounds.
$(16,800), 292(21,100), 386(45,400), 552$ sh $(1050), 607 \mathrm{sh}$ nm (580); $\nu_{\text {max }}(\mathrm{KBr}) 2130 \mathrm{~m}(\mathrm{C}=\mathrm{C}), 970 \mathrm{~s}($ trans $\mathrm{C}=\mathrm{C})$ cm^{-1}. Substance 1 was relatively stable, both in the solid state and in ether solution.

It has been shown previously that the ${ }^{1} \mathrm{H}$ NMR spectra of certain 1,3-bisdehydro[14]annulenes are temperature dependent, due to rotation about the trans double bonds, ${ }^{19}$ and this proved to be the case with the diacetate 7 . On the other hand, the ${ }^{1} \mathrm{H}$ NMR spectra of the dehydroannulenes $9,10,11$, and 1 were essentially temperature independent in the range -60 to 100°, and showed the macrocyclic rings to exist in the indicated conformations.

Some ${ }^{1} \mathrm{H}$ NMR parameters of various 1,3-bisdehydro[14]annulenes are given in Table I. As expected, the substituted compounds 9,10 , and 11 are diatropic ("aromatic"), the inner H^{A} protons resonating at unusually high field, and the outer $\mathrm{H}^{\mathrm{B}}, \mathrm{H}^{\mathrm{C}}$, and CH_{3} protons at unusually low field. It has already been found that the diatropicity of a 1,3 -bisdehydro[14]annulene is considerably reduced by fusion of a benzene ring (see 15 in Table I), ${ }^{20}$ and almost completely eliminated by fusion of a [c]furan ring (see 6 in Table I). ${ }^{5}$ It is evident from the NMR spectrum of 1 that fusion of a second bisdehydro[14]annulene also reduces the diamagnetic ring current of the bisdehydro[14]annulene, although to a lesser extent than benzene. The decreasing order of dia-
tropicity of the macrocyclic ring of the various compounds in Table I $(9,10,11>1>15>6)$ is presumably a reflection of a decrease in the importance of different participating Kekulé structures of that ring.

Acknowledgment. We thank the Royal Society and the Science Research Council for financial support.

References and Notes

(1) Unsaturated Macrocyclic Compounds. CXIV. For part CXIII, see R. T. Weavers, R. R. Jones, and F. Sondheimer, Tetrahedron Lett., 1043 (1975).
(2) We suggest that the trivial nomenclature of dehydroannulenes contalning one, two, three, four, etc. acetylenes should contain the prefix mo-nodehydro-, bisdehydro-, trisdehydro-, tetrakisdehydro-, etc., respectively, in order to avoid confusion in the literature (see P. J. Garratt and K. Grohmann in "Houben-Weyl, Methoden der Organischen Chemie", Vol V, Part 1d, Georg Thieme Verlag, Stuttgart, 1972, pp 543-544). Unless otherwise indicated, the rings in annulenoannulenes are considered to be ortho fused.
(3) A. Garden, Ann. Philos., 15, 74 (1820).
(4) IUPAC nomenclature: $5,10,18,23$-tetramethylbicyclo[12.12.0] hexa-cosa-1(14), 2, 4, 10, 12, 15, 17,23,25-nonaene-6,8,19,21-tetrayne.
(5) P. J. Beeby, R. T. Weavers, and F. Sondheimer, Angew. Chem., 86, 163 (1974).
(6) M. J. Cook and E. J. Forbes, Tetrahedron, 24, 4501 (1968); J. A. Elix, M V. Sargent, and F. Sondheimer, J. Am. Chem. Soc., 92, 973 (1970).
(7) Isolated by chromatography on (a) SiO_{2} (Woelm, act II); (b) $\mathrm{Al}_{2} \mathrm{O}_{3}$ (Woelm, act III).
(8) The 'H NMR, electronic, and ir spectra of all new pure compounds were in accord with the assigned structures.
(9) The elemental composition was confirmed by the high resolution mass spectrum.
(10) T. M. Cresp, M. V. Sargent, and P. Vogel, J. Chem. Soc., Perkin Trans. 1,37 (1974).
(11) M. Gaudemar, Ann. chim. (Paris), 1 (13), 161 (1956); C. Prévost, M. Gaudemar, L. Miginiac, F. Bardone-Gaudemar, and M. Andrac, Bull. Soc. Chim. Fr., 679 (1959).
(12) See R. L. Crossland and K. L. Servls, J. Org. Chem., 35, 3195 (1970).
(13) The converslon of 3 to 6 is based on the synthesis of related benzobisdehydroannulenes, carried out by Dr . N. Darby in these laboratories.
(14) Reaction of 3 with propargylaluminum bromide," followed by coupling and then dehydration, led to the unstable bisdemethyl-6. We prefer to retain the methyl groups, as they confer increased stability and are useful probes for the study of ring currents by ${ }^{1} \mathrm{H}$ NMR spectrometry.
(15) See N. Elming and N. Clauson-Kaas, Acta Chem. Scand., 6, 535 (1952); N. Elming, bid., 6, 578 (1952).
(16) O. Isler, H. Gutmann, M. Montavon, R. Rüegg, G. Ryser, and P. Zeller, Helv. Chim. Acta, 40, 1242 (1957).
(17) A small amount of cis,trans-9 was also formed, but was readily removed by crystallization from petroleum ether- $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
(18) The substance decomposed on attempted melting point determination
(19) R. T. Weavers and F. Sondheimer, Angew. Chem., 86, 165 (1974).
(20) R. T. Weavers and F. Sondheimer, Angew. Chem., 86, 167 (1974).

Terry M. Cresp, Franz Sondheimer*
Chemistry Department, University College
London WClH OAJ, England
Received April 4, 1975

Cycloadditions of Alkenylidenecyclopropanes with Acetylenic Dienophiles. An Exclusive Formation of the $(2+2)$ Cycloadduct

Sir:
Alkenylidenecyclopropane (1) has been shown recently by Pasto and his coworkers to react with 4-phenyl-1,2,4-triazoline-3,5-dione via a concerted $\left[\left(\pi_{2}+\pi_{\pi} 2+{ }_{\sigma} 2\right)+\pi_{\pi}\right.$] pathway, ${ }^{1}$ while with chlorosulfonylisocyanate (CSI) 1 reacts via a dipolar intermediate followed by cyclopropane ring opening and recyclization ${ }^{2}$ and with methylenemalondinitriles ${ }^{3}$ and dichlorodifluoroethylene ${ }^{4}$ in a $(2+2)$ fashion via a radical mechanism. In view of the above variety of

1

